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Monte Carlo Study of Self-Avoiding Surfaces 
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Two models of self-avoiding surfaces on the cubic lattice are studied by Monte 
Carlo simulations. Both the first model with fluctuating boundary and the 
second one with a fixed boundary are found to belong to the universality class 
of branched polymers. The algorithms as well as the methods used to extract the 
critical exponents are described in detail. The results are compared to other 
recent estimates in the literature. 

KEY W O R D S :  Self-avoiding surface; Monte  Carlo; branched polymers; 
lattice model. 

1. I N T R O D U C T I O N  

In this paper two models of self-avoiding random surfaces are investigated. 
Random surface (RS) models have been proposed to describe a great 
variety of different physical phenomena. One important area is the RS 
expansion of lattice gauge theories. ~1) This expansion creates ensembles E 
of RS consisting of complexes built out of the elementary 2-cells of a 
d-dimensional hypercubic lattice. The action of the theory then assigns the 
every surface S a statistical weight Z~(S), where fl is related to the inverse 
gauge coupling constant. The theory of strings, ~2) which currently seems to 
be the most promising candidate for a unified theory including quantum 
gravity, can be viewed as an RS theory by studying the "world sheets" 
created by the strings in four-dimensional space-time coordinates. 

Condensed matter physics is another major area where RS models are 
useful. Problems involving interfaces and domain walls are usually 
expressed in terms of some restricted set of random surfaces; e.g., wetting, ~3) 
roughening. ~4) A RS-model may also be useful to describe membranes or 
sheetlike polymers in the same way as the self-avoiding walks and the 
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lattice animals are used as idealized models of linear and branched 
polymers. (5~ Note, however, that contrary to these bond problems, (6/ the 
RS models are generally expected to encompass a large number of different 
universality classes. For example, Kantor  et aL ~7) studied a RS ensemble 
that consists of all embeddings of a fixed two-dimensional network of 
"plaquettes" into d-dimensional continuous space. Such a model can be 
expected to behave in a rather different way from an ensemble with no 
restrictions on the way the elementary constituents, e.g., the plaquettes, are 
connected. (8) In fact, it is one of the aims of this paper to make a 
contribution to identifying possible universality classes of lattice models 
of RS. 

It seems also that RS models may be a useful means to study 
microemulsions. Specifically, the lattice Ising model proposed by Widom (9) 
and recently generalized by Hofsaess and Kleinert/1~ to include the 
Gaussian curvature term of the original continuum model due to 
Helfrich (11) should be an ideal candidate to investigate by the methods 
described in the following. 

We used the Monte Carlo (MC) method to analyze the "critical 
behavior" of the two surface models studied. Some of our results and 
conclusions have already appeared in two brief reports. (~2'13) RS models are 
usually so complex that no general analytical method has so far been 
developed to study them. Rigorous results are scarce and in most cases 
only available for RS models without any global constraints like self- 
avoidedness. A recent review emphasizing the mathematical aspects of RS 
models is Ref. 14. Other nonnumerical work on RS models is mostly rather 
speculative/15'16"8) There exist a variety of MC studies of lattice models of 
RS, (17-2~ some of them to be discussed later in relation to our results. 

The paper is organized as follows. In Section 2 the two considered 
ensembles are defined and some facts and fictions are stated about them. 
The Monte Carlo methods used for each ensemble are described in two 
separate subsections in Section 3. All results are presented in Section 4 and 
a discussion of our results in relation to other work is given together with 
conclusions in Section 5. 

2. M O D E L S  

We consider two ensembles of self-avoiding random surface models, 
both defined on the hypercubic lattice Z d. By a surface S in Z a we under- 
stand a set of elementary 2-cells, in the following called plaquettes. Each of 
these plaquettes in S is supposed to be connected to at least one other 
plaquette of S; the word connected means here that the plaquettes share a 
commonl-cell,  i.e., a bond, in Za; sharing a common corner is not enough. 
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The bonds that belong to just one plaquette in S constitute the boundary 
OS = 7 of S. The Euler characteristic X of the surfaces is restricted to ~ = 2, 
which means that they are topologically equivalent to a sphere. Each 
surface is required to contain a fixed chosen plaquette Po. The difference 
between the two considered ensembles consists in restrictions on the boun- 
dary OS as well as in the self-avoidance constraint. Specifically, these are 
the following. 

Ensemble 1 (El). Consists of all surfaces whose boundary is in the 
set of single self-avoiding loops in Z a. Furthermore, each plaquette, bond, 
and site in Z d can be occupied at most once by S. Figure 1 shows an 
example of such a surface for d =  3. 

E n s e m b l e  2 (EJ .  Includes all surfaces whose boundary is empty. 
The self-avoidance constraint is imposed only for the plaquettes and bonds, 
not for the sites in Z d. For d = 3 ,  this means that a site in Z 3 can be 
contained in six bonds belonging to S. A surface in this ensemble in three 
dimensions is depicted in Fig. 2. 

We define a configuration of RS to be an equivalence class of surfaces 
that can be mapped onto each other by lattice translations. Let CN.i 

/ / _  
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/ 
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/ 

Fig. 1. A surface belonging to E 1. Hatched plaquette denotes P0. 
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I 
Fig. 2. Surface in E2. Hatched plaquette denotes P0. 

( i=  1, 2) denote the number of configurations in E i whose surfaces are 
made of N plaquettes. 

Using arguments due to Hammersley, ~21) Durhuus e t a l .  ~22) have 
shown that 

/~2 = lira [Cu,2] 1IN (2 .1 )  
N ~ o o  

exists and is bounded by 

[ 3 ( d -  2)] 1/4 ~< #2 ~< 2 d -  3 (2.2) 

The same arguments can be applied to show the existence of #1. A 
crude upper bound for #1 is obtained by incribing a cross connecting the 
midpoints of opposite edges of each plaquette of S e  El.  For  each S, one 
then obtains a unique bond lattice animal containing 4N bonds on a hyper- 
cubic lattice of half the lattice spacing of the original lattice. From the 
theory of noninteracting bond nimals (23) one then gets 

~1 ~ (2de) 4 (2.3) 
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where e is the base of the natural logarithm. By combining plaquettes in 
positive coordinate directions, it is easily seen that 

2 ( d -  1 ) ~< #1 (2.4) 

Similar bounds for a related model have been obtained by Tasaki and 
Hara. (15) Based on analogy to the lattice geometric bond problems (e.g., 
the self-avoiding walk or bond lattice animals), we expect that 
asymptotically 

CN, i~/2NN Oi (2.5) 

as N--* or. The exponent 0i is expected to be universal, i.e., not to depend 
on the lattice for a given d. However, we do not apriori expect that 01 = 02. 
Durhuus etal. ~24) have shown that if one drops the self-avoidance 
constraint on the surfaces in E2, and if 02 < 3, then 

0 2 = 5/2 (2.6) 

This value coincides with the "mean field theory" for noninteracting 
lattice trees and is in fact derived in an analogous way. For purely entropic 
reasons, almost all surfaces tend to be treelike, made up of cylindrical 
elements consisting of two overlapping plaquettes glued together along 
opposite edges. Such surfaces, when viewed from far away, look like lattice 
trees and it is irrelevant whether the elementary building blocks are 
plaquettes or bonds. The arguments in Ref. 24 obviously also apply to 
noninteracting surfaces in E 1 and yield therefore 

01 = 02 = 5/2 (2.7) 

As the embedding space dimensionality d tends to infinity, one can show 
that the self-avoidance constraint becomes irrelevant. Indeed, Drouffe 
et aL ~25) have obtained 02 = 5/2 for self-avoiding surfaces in the limit d ~ oo 
by a mean field theory similar to the one mentioned above, except that the 
trees are now made out of "tubes" consisting of three-dimensional cubes 
with two of their six faces removed. 

Another quantity of interest is the mean radius of gyration 

1 
RN, i -  CN i 2 1~S ( 2 . 8 )  

, S t  E i 
ISl = N  

where I SI denotes the number of plaquettes in S and 

R s = - ~  X 2 -  ~-~ X, (2.9) 
l = l  / = 1  
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where Xt--(x) ..... xz a) denotes the coordinates of the center of the /th 
plaquette of S. For large N, it is expected that asymptotically 

RN, i N~i (2.10) 

with ve depending only on the dimensionality d for given i. The Hausdorff 
or fractal dimension (26) dr,~ of these models is related to v~ by 

dr, i = v~ 1 (2.11) 

The "mean field theories" mentioned above yield 

v~ = 1/4, i =  1, 2 (2.12) 

Since in this case dg, i= 4, it has been argued ~27) that above dF, i+ dr, i= 8 
dimensions, two surfaces will typically not intersect each other and the self- 
avoidance constraint should therefore become irrelevant, i.e., the self- 
avoiding surface in d >  8 should be correctly described by mean field 
theory. In low dimensions d = 2 ,  3, these arguments suggest that self- 
avoidance leads to non-mean-field-like critical exponents 0i, vi. One pur- 
pose of the Monte Carlo simulations reported here was to check whether 
self-avoiding surfaces undergo a collapse into self-avoiding lattice trees 
even in low dimensions d~< 8. Some support that this collapse may happen 
for the ensemble E~ is given by the fact that in d =  2 this model is exactly 
dual to the ensemble of lattice animals. Heuristic arguments that this may 
also be true for E2 have been brought forward by CatesJ 8) 

Let Po.u and Px,~ denote two plaquettes in Za; 0 is the origin and x is 
some site in Z a, and 1 <~ #, v <~ d ( d -  1)/2 label the plaquettes attached to a 
given site. 

Motivated by the field-theoretic description of the bond models, (28"6) 
we define the two-point function 

c ~ ( x , / ~ )  = 

and the susceptibility 

~, r (2.13) 
S E  E i 

PO,m px,v ~ S 

Z/"(fl) = ~ G~V( x, fl) = ~ ISb fllst= ~ NzCN, i fiN (2.14) 
X,V S ~ E i  N =  1 

PO,t~ e S 

G~V(x, fl) is expected, and can be shown for certain restricted ensembles of 
surfaces models ~29) to decay exponentially in the distance Ixl for small ft. 
We are interested in the decay rate 

m,(fl) = - lim n -1 In G~/'(net, fl) (2.15) 
n ~ o o  
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where e t is a unit lattice vector (1 ~< l<~d). Obviously, by symmetry, 7~:(/~) 
does not depend on /~. From the theory of critical phenomena for spin 
systems we expect that there exists a "critical temperature"//~.,i such that as 

Zi(/~) ~ (flc,i-/~)-7~ (2.16) 

mi(fi) ~ (flc,~- fl)vi (2.17) 

From (2.5), (2.14) we see that 

0 i = 3 - 7 ~ ,  fl~,~=/~1 (2.18) 

and by scaling it is expected that the v~ in (2.17) is the same as the one in 
(2.10). Note that in the surface model /3 is a plaquette activity associated 
with the "grand canonical" (2.14) in equilibrium with a plaquette reservoir. 

3. MONTE CARLO ALGORITHMS 

In thi section we describe in detail the Monte Carlo (MC) algorithms 
for the random surface ensembles E 1 and E2 introduced previously. Since 
these are very different for the two ensembles, we describe them in two 
separate subsections. 

3.1. M C A I g o r i t h m  forE1 

Our algorithm generates surfaces in El in three dimensions with the 
fixed plaquette P0 in the xy  plane with one corner at the origin and the 
remaining three corners having nonnegative coordiates. It produces 
surfaces in a modified grand canonical ensemble at plaquette activity ft. Let 
7 be the self-avoiding boundary loop of a surface S ~ El,  i.e., OS = 7, and let 
17] denote the number of bonds in 7. 

A Monte Carlo step then consists in the following procedure. First a 
bond b is chosen at radom from the boundary loop 7. Then it either 
attempts to append a plaquette p + to S at b into one of the possible 2 d -  3 
directions or to remove the uniquely defind plaquette p that has b as one 
of its edges. In the former case it has to check whether the resulting surface 
S'  as well as the new boundary loop 7' are both self-avoiding. In the latter 
it has to check whether 7' is still self-avoiding. To determine the Markovian 
dynamics, we have to specify precisely the matrix W of transition 
probabilities. Since at each MC step a bond is first chosen at random in 7, 
it follows that the number of surfaces S '  that can be created from S in one 
MC step is proportional to ]7]; the transition probabilities from a surface S 
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to surface S' that can be created from S in one MC step is proportional to 
17[; the transition probabilities from a surface S to a surface S' are 

[ ( 2 d -  3) Irl] -1 [1 - c(/~)], S <  S' 

171-lc(fl), S' -< S 
W(S ~ S') = (3.1) 

[ ( 2 d -  3) 171 ] -111 - c(/~)] A(S) 

+ 171 lc(/~) B(S), S '= S 

The constant e(/~) is determined below from the detailed balance condition 
for the appropriate grand canonical ensemble. Here S-< S' means that S' 
can be constructed from S by adding a plaquette at some bond b in 7 = OS. 
The integer A(S) denotes the number of ways one can create a surface that 
violates the self-avoiding constraints by appending a plaquette at a bond in 
7, and the integer B(S) arises from two contributions; first, the number of 
ways in which 7 could become non-self-avoiding by removing a plaquette 
from S, and second, the number of edges of Po that belong to 7 (since Po 
should never be removed). 

From the definition (3.1) of the transition probability matrix W it 
follows that if one requires the stationary state probabilities P(S) of the 
Markov chain executed by the MC algorithm to be 

P(S) = 171/~isl/z~(/~) (3.2) 

then the detailed balance equations 

W(S ~ S') P(S) = W(S' - ,  S) P(S') (3.3) 

reduce to [see Eq. (3.1) and (3.2)-] 

( 2 d - 3 )  111 -c(/~)]/~lsl =c(/~)/~ls'l (3.4) 

and hence, since ]S'l = iS[ + 1, yield 

1 
c(/~) = 1 + ( 2 d -  3)/~ (3.5) 

The prefactor 17[ in P(S) motivates the name modified grand canonical 
ensemble, where in (3,2) 

S , ( / ~ ) = ~  171 ~ /~lsl (3.6) 
S : 8 S  = y 

S E E  1 

It is obvious that this modification is introduced purely for computational 
ease, because after the algorithm has chosen a bond b at random in ]7], it 
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can then proceed to compare a random number r with the constant c(~). 
If r~< c(/~), it attempts to delete a plaquette, otherwise it tries to append 
a plaquette at b with equal probability into one of the 2 d - 3  allowed 
directions. 

An important part in the simulation of such complex geometrical 
models is the design of a data structure to represent the surfaces in the 
computer that allows the Monte Carlo steps to be executed efficiently. We 
settled for a method which could be called a straightforward adaption of 
the data structure used to simulate self-avoiding lattice trees by Caracciolo 
and Glaus. (3~ The design of a data structure naturally depends on the type 
of computer used for the simulation, which in our case was a CDC-174- 
721. 

b N they The surfaces are stored by specifying all the bonds { ,,}~=1 
contain in the lattice. To each bond b, we associate a link field {l~,j}2~ ~, 
which has a nonzero entry only if a plaquette is appended at bn in direction 
j. In this case ln,j contains the locations nl, n2, n3 in the array {bn} of the 
three other edges of the plaquette. These are stored in consecutive bit 
strings within one computer word and can be retrieved by simple SHIFT 
and MASK operations. The bonds {bn(m)}M= 1 that belong to 7 are stored 

d M by their location {n(m)}m~=~ together with their directions { re}m=1 
(1 ~< dm <<. 2d). Since the MC simulation is started with S =  Po, the orien- 
tation of 7 is fixed for all times by requiring the first step of 7 = ~?Po from 
the origin to be in the direction (1, 0, 0). The facilitate the upgrading, we 

), which contain the also stored the two arrays {Sm}m=~({S+m}~=~ 
locations m (m +) in n (m) of the bonds being the backward (forward) 
neighbor of b,(m) in 7. With this data structure, the computational effort 
needed to complete one Monte Carlo step does not depend on the number 
N of bonds in S. Moreover, the storage space needed in the computer is 
proportional to the maximum allowed number Nmax of bonds in S, which 
makes this algorithm especially suitable for a simulation in high dimen- 
sions. In Fig. 3 we draw the six essentially different "elementary moves" 
that are performed by the program. 

In order also to keep the time for a self-avoiding check independent of 
]S], we used two-bit maps. The follwing description is specific to a 3d lat- 
tice. Each lattice site is represented by a bit, which in the first map is set to 
one if the sete belongs to S and in the second maps is set to one if it is 
visited by 7- For computational reasons we only used 32 of the 60 available 
bits in each computer word and we reserved 213 computer words for each 
map and therefore forced the surface to stay inside a 64 x 64 x 64 lattice, 
which for the values of fl that were used for the production runs was in fact 
no restriction at all on the Markov process. For  some moves such as the 
one shown in Fig. 4 it turned out to be necessary to also perform a self- 
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Fig. 3. The six "elementary moves" in the algorithm for El. The upper three moves 1-3 
append the plaquette characterized by the broken-lined square. The lower three moves 4-6 
remove the broken-lined plaquette. The arrow points to the randomly chosen bond in all 
cases. The bold-lined bonds denote the boundary 7 = OS of S. 

/ 

Fig. 4. A surface equivalent to a box with an open lid that necessitates the bond self- 
avoidance check. The algorithm attempts to add the broken-lined plaquette to the bond with 
the arrow in the boundary characterized by the bold lines. 
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avoiding check with respect to the bonds in S. The bonds were stored by 
their location n in {bn } in three additional arrays, one for each direction, of 
size 29 , by using the same word for coordinates that are mapped onto each 
other by translations T 8 of the lattice by multiples of eight lattice spacings. 
Since we took Nmax = 1024, we used ten bits for each location n of the 
corresponding bond. This limits the size of the surface to six bonds for each 
set of coordinates that are equal modulo Ts; we never observed an "over- 
flow" during the simulation. We refer to this method of storing the bonds 
as hash-coding. 

Remark. The foregoing description of the data structure shows that 
the updates necessary for one successful Monte Carlo step require a rather 
long CPU time; we measured about 500~tsec on the CDC 174-721. It 
seems, however, hard to improve this significantly by a different method. 

3.2. M C  A lgor i thm for Ez 

The algorithm we used to probe the ensemble E2 is basically identical 
to the one proposed by Sterling and Greensite (SG) (17) with some minor, 
albeit crucial modifications. We will set d =  3 in the following. As before, 
the surface size IS] fluctuates according to some modified grand canonical 
ensemble at plaquette activity 3- The fixed plaquette Po is the same as in 
Section 3.1. 

In this case a Monte Carlo step is more naturally described if we first 
briefly sketch the employed data structure. A surface S is stored in a single 

N = L  3 integer array { C~ }n = ~, where N represents here the size of the lattice 
A used for the simulation; we chose L = 20. Each C~ corresponds to an 
elementary 3-cell or a cube in A; n specifies its location in A. If the face Pn,t 
(l = 1,..., 6) in direction l from the center of Cn is occupied by S, then the 
/th bit of C, is et to one, while it is zero otherwise. The directions are 
labeled as shown in Fig. 5. If, for a given surface, C~ r 0, then n is entered 
in a contiguous list {n(m)~= i unless C~ is one of the two adjacent cubes 
sharing Po as one of their faces. The location m of the index n of Cn in the 

M contiguous list {n(m)}m= 1 is also stored in C, beginning at the seventh 
bith position. 

The Monte Carlo algorithm then starts by choosing at random a cube 
C, from the list {n(m)}~= 1 containing the indices of cubes that have faces 
belonging to S. It then attempts to reverse the occupied/empty status of all 
paquettes of C n. In other words, its "elementary moves" consists in adding 
or removing the faces of cubes adjacent to S. A transition is only allowed if 
the resulting surface S '  belongs to E2 and if the Metropolis check for the 
equilibrium distribution defined below is passed. 
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Fig. 5. The labeling of the directons of a cube. 

Let [ISI[ denote the number of cubes with faces occupied by S. For 
given S and S '~E2  we then obtain the following expression for the 
transition probabilities: 

1 
Nsr p(~' IsI--, IS'l) s ~ s '  

'{ 
w ( s ~  s ')= IlSlf--2 ~ P(fl, ISI--, IS'l) (3.7) 

S ' : S ~ S '  
S '  q~ E2 

+ Y', [1-p(~,[SI--,IS'[]~ S=S'  
S ' : S ~ S '  J 

Here, the first term in the second line arises from the elementary moves 
that create a surface S' not belonging to E2 while the second term comes 
from the Metropolis checks. S ~  S' means that S and S' can be transfor- 
med into each other in once MC step. The factor IISll-2 in the 
denominator arises from fact that a given S' can be created from S only if 
the right cube has been chosen among the availabe IISII- 2 that have faces 
in S and do not contain Po. Clearly, the stationary state probabilities 

P(S) = (11 all - 2)/~181/~2(/~ ) (3.8) 

satisfy the detailed balance equations (3.3) if we choose 

1 ISI ~> ]S'I 
p(/L ISI---, IS' l )=  /3ts,i isl otherwise (3.9) 
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The denominator in (3.8) normalizes P(S) to a probability and is 
equal to 

32(/3)= ~ (11811- 2) /3 ~x~ (3.10) 
SeE2  

Remark 7. The only differences between this algorithm and the 
original one due to SG are that we keep the plaquette Po fixed at all times 
and that the upgrading is not sequential, as in SG, but random among 
only those cubes that are adjacent to S. We will comment later on the 
consequences of these modifications. 

Remark 2. Since the simulation used only a lattice cube A of size 
L = 20 lattice spacings, it had to keep track of the maximal extension of all 
surfaces in all three coordinate directions; those must never exceed L -  1 if 
all surfaces in E2 with an equal number of plaquettes are to have equal 
probability of occurring. Otherwise it is perfectly admissible to let a surface 
"spill out" of A and to continue it periodically into A again. 

4. R E S U L T S  

In this section we describe the numerical results obtained by extensive 
simulations of the MC algorithms. A major effort was spent to estimate 
statistical and systematic errors as carefully as possible; in this we followed 
the Monte Carlo work by Berretti and Sokal (31) on the two-dimensional 
self-avoiding walk. Some peculiarities arising for observable averages due 
to the prefactors [TJ (resp. ]lSH) in the modified grand canonical ensembles 
31 (resp. 32) will also be pointed out. 

4.1. Results for  the  Ensemble E 1 

The runs for this ensemble were performed on a CDC Cyber 174-721 
at the Rechenzentrum of the ETH in Zurich, Switzerland. Since the 
implementation of the algorithm for E l is very complex, we performed 
numerous checks with the program before starting the production run. 
During the run we checked every 2 x l 0  6 MC iterations whether the surface 
still belonged to E 1. Since this was the case during the total of 2.5 x 10 9 

iterations, we are confident that the program contains no error. 
The methods described in Ref. 31 allow one to extract information 

about the exponents 01 and vl and the "growth constant" /~1 from a 
simulation of the grand canonical ensemble ~1 at one single activity/3. We 
took 

/~ = 0.074 (4.1) 
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which was determined to be optimal from some preliminary runs. Note 
that it follows from (2.5) and (3.2) that as/~ --+/3c,1, one gets approximately 

(ISt/l~,[) /~(2- 01) (4.2) 
(1/1~1) f lc ,  l - f l  

Here the brackets ( ) denote expectations with respect to the probability 
(3.2); the average size of ISI can therefore be set to any desired value by 
appropriately choosing/~. 

It is seen in Eq. (4.2) that we had to take the ratio of the expectations 
for ISI/I~I and 1/1~1 in order to relate the mean surface size to (2.5). This 
arises from the factor t71 in P(S), (3.2). In fact, we can obtain the 
expectation for any observable O o n  E 1 with respect to the unmodified 
grand canonical probability measure 

Po(S) = ~ls'l/ ~ ~lsl (4.3) 
IS~Ei 

simply by calculating the ratio 

(0(S)/171)/(1~1 1) (4.4) 

with the probability (3.2). 
The program was left running for a total of 2.5 x 109 MC iterations 

starting with the surface consisting of the single plaquette Po. Every 
5 X 1 0 3  MC steps the number of bonds Bs, the number of boundary links 
I~1, and the radius of gyration Rs were measured. Every 500 measurements 
these data were stored on tape for the subsequent statistical analysis. In 
addition to the surface observables, we also recorded the acceptance frac- 
tion F as well as the fractions FsA, FLA of unsuccessful attempts to change 
a surface S to S'  due to S' not being self-avoiding (FsA) or 7 '=  0S' not 
being self-avoiding (FLA). The fraction Fins of attempts that would result 
in a disconnected S' was also recorded. Note that the transition 
probabilities (3.1) are chosen such that at each MC step an attempt to 
either remove or add a plaquette is actually made. 

The values for the acceptance/rejection rates are listed in Table I. The 

Table I. Acceptance and Rejection Rates As Explained in Text 

A c c e p t a n c e  ra te ,  % Rejec t ion  ra te ,  % 

F =  35.1 FsA = 4.1 

FLA = 39.6 

Fins = 21.2 
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quoted values are accurate to at least the last given digit. Surprisingly, 
these values indicate that only 4.1% of all MC steps attempt to create a 
surface that violates the self-avoiding constraint. It is much more likely to 
have a collision of the boundary loop 7 or to dissect a surface into two 
pieces. This is a first indication that typical surfaces in E 1 are ramified this 
structures consisting primarily of branches of single plaquettes glued 
together at two edges and that only a negligible fraction of surfaces cover a 
large compact area. 

For  a correct treatment of the statistical errors due to the finite 
sampling of E1 in the MC simulation, it is necessary to have an estimate 
of the autocorrelation time of the algorithm. For  this purpose we have 
estimated the autocorrelation functions Coo(S) of the observables O = IS] 
and O = R s by using the estimator 

Coo(S)- 1 . Y1"1 0,0,+~- (4.5) 
n - I s ]  t='~i 

where O, denotes the value of O at the tth measurement and the sample 
size n is in our case 

n = (2.5 x 1 0 9 ) / ( 5  • 103)  = 5 x 105 

For the average ( O )  we use the natural estimator 

( 0 ) = 1  ~ O~ (4.6) 
?/ 

t = l  

Since it can be shown (3~) that for our MC algorithm Coo(S) has the form 

Coo(S) = ~ c~; e x p ( - 2 ; s )  (4.7) 
J 

with 0 < 2 ~ < 2 ~ ..... it follows that 2 ~ sets the time scale needed for a given 
observable O to lose its memory; we therefore take 

Zoo = E,~ ~  ' 

as the autocorrelation time for O and estimate it from plotting 

-Isl  
Zoo(S) = ln[Coo(s) /Coo(O)]  (4.8) 

as a function of s and extrapolating s to infinity. Figure 6 plots ZlsHsl(S ) 
and rRs, Rs(S) versus s. Note that in both cases the data become noisy for 

822/50/5-6-20 
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$ 
Fig. 6. Autocorrelation times Zoo(S) [-eq. (4.8)] for O = S(.) and O = Rs(. ) versus s. The z's 

are in measured units, each unit corresponding to 5000 MC steps. 

s/> 15 (corresponding to 75,000 M C  iterations). It is clearly seen, however, 
that  these curves behave as predicted by (4.7) and we estimate 

rtsl.lsl = (2.8 +_0.3) x 1 0  4 M C  Steps (4.9) 

rRs. Rs = (3.8 ___ 0.5) X 104 M C  Steps (4.10) 

where we obtained the error  bars from the crude estimate 

2%o 2 
Adoo(S) <<,--s Coo(O ) (4.11) 

The statistical error bars therefore, as will be the case in all later estimates, 
represent the classical 9 5 %  confidence limits. For  later statistical error  
estimates ZRs, Rs was taken for the autocorre la t ion time r of the M C  
algorithm. The means [eq. (4.6)] of I?l, Bs,  and IS] were found to be 

(171) = 56.10 + 0.38 

( B s )  = 84.50 + 0.58 (4.12) 

( ] S I )  = (2Bs - 171 )/4 = 28.04 + 0.20 

For  the following analysis we define the "censored mean" of  an observable 
O to be 

< O ) N m i n  = O(SI)  z ( IS ,  I ~> Nmin) z ( I s ,  I ~ Nmin) (4.13) 
t = l  t 1 
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where Z is the characteristic function for the event IS t i )Nmi  n. Only 
surfaces with at least Nmi n plaquettes are used to calculate (O>um~~ this is 
useful to get a feeling for the corrections to scaling by observing the 
behavior of <O >Umi, as a function of Nmi n. 

An interesting observable for E1 is the ratio IS[/IYI. By extrapolating 
< l S I / I ] ) l  >Nmin t o  Nmi n + oo we obtain the estimate 

<tsI/l~l > =o.515 !0.01 • (4.14) 

for this ratio. Here, as later, the first term on the right side refers to our 
central estimate, the second to our estimate of the systematic error due to 
corrections to scaling, and the last gives the statistical error [twice variance 
times (2r )m] ,  which is very small, indicating little fluctuation in this quan- 
tity. Moreover, our central estimate is finite and very close to 1/2, which 
implies that the plaquettes contribute on the average two of their edges to 
the boundary loop t?l. Therefore, typical surfaces are ramified treelike 
structures with almost all plaquettes having edges at the boundary ~?S. 

The estimates for 01 and #1 were obtained by means of the maximum 
likelihood method. Based on Eq. (2.5), we took into account the effects due 
to corrections to scaling by assuming that for N>~ Nmin, we have exactly 

CN,1 = #NN-<(1 + a/N) (4.15) 

This is admittedly a very crude way to treat these corrections. A non- 
analytic term biN ~ with e )<  1 should in general be expected and would 
clearly dominate the large-N behavior of the corrections. By te same 
reasoning one would also have to take into account a multitude of further 
analytic and nonanalytic corrections to scaling terms with unknown 
amplitudes. It seems hopeless to disentable these with the available data 
and we feel that (4.15) is jsut as good as any other Ansatz; it merely serves 
to obtain a crude estimate for the order of magnitude of these corrections 
by varying Nmi. and a and recording the resulting behavior of 01 a n d / q .  
Once can thereby determine a subjective estimate of the systematic error 
for the exponents due to these corrections. We think that a systematic error 
estimate should be represented in such a way that it is easy for everyone to 
check and see whether it meets his or her individual standards. 

The maximum likelihood method then amounts to equating, for the 
observables O(ISJ) = ]SI and O(ISI) = In I SI, the "theoretical averages" 

<O>Nm, n = O ( N )  NCN. 1 NCN, 1 (4.16) 
N rnin _1 L N = Nrnin 

to the observed averages <O/17f >Nmin/<l/l'yl >Nmi." For each pair (Nmi., a) 
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one can thus obtain 01(Nmin, a) and #l(Nmin, a) by solving numerically the 
two equations for O = I SI and O = In I SI. 

In Fig. 7, 01 and /~ are plotted versus Nmi ~ for various a. F rom this 
plot we estimate 

01 = 1.48 _ 0.12 +_ 0.05 (4.17) 

#1 = 12.798 + 0.025 _+ 0.018 (4.18) 

The statistical error here is twice the variance for Nmi n = 20 obtained from 
the explicitly known covariace matrix multiplied by (2~) 1/2. For the 
estimation of v l, we minimized the expression 

e(vl, bo) = ( [In R s -  vl ln(ISI + bl) + b0]2)Nmi. 

12.80 

kl, 

12.' / '5 

I S =-2 

- !  

I - I ~  2~=0 
0.04 0.08 

N ,n 
1.6 

01 
1.5 

I I 

2 
I I 

0.04 0.08 
N -1. 

mln. 

Fig. 7. Plot of/~1 (top) and 01 (bottom) versus Nmiln for various a. Circles denote measured 
values, which show statistical fluctuations. The lines are guides to the eye that were used to 
obtain the central estimates. 
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with respect to vl and b0 for various bl and Nmin. The results for v~ are 
plotted against Nyi ~ in Fig. 8 and we estimate 

v 1 -- 0.504 + 0.010 _+ 0.0006 (4.19) 

The statistical error is twice the variance from least squares theory (for 
Nmin = 40) multiplied by (2~) ~/2. Note that both 0~ and v~ are close to the 
exact branched ploymer values 0 = 3, v - ~ (32) - ~, and together with the quoted 
error bars are certainly consistent with them. 

4.2. Results for Ez 

The runs for E2 were performed on the Cyber 205 at the National 
Bureau of Standards in Gaitherburg, Maryland, where one MC step 
required about 45/~sec. 

The production run was performed with the fixed activity fl set at 

/~ = 0.56 (4.20) 

It started with a single cube containing P0 and comprised a total of 108 
MC steps. In order to be able to compare the MC results to the theoretical 
expectation (2.5), averages of O should be performed with respect to the 
unmodified probability measure (4.3), which from (3.8) can be seen to 
correspond to take the ratio 

(O/(  I] SI] - 2) ) / (  1/( ]] SI] - 2) ) (4.21) 

0 .51  

~ 0 . 5 0  

0.49 

I I 

- - e ; ~  bl= -I 
f 

J 

"~bl=~""" o -2 
- -  - ~ , o b ~ - - - 3  

I I 
0.02 0.05 

N -1 
rain. 

Fig. 8. Plot of vi versus N~i I for various bl. Lines are guides to the eye. 
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Data were taken every 2 x 103 MC steps. They consisted of the number of 
plaquettes ISI, the volume Vs enclosed by S, and Rs. The acceptance 
fraction was not recorded for this algorithm. Using the previously 
described method, we measured an autocorrelation time 

= (5.6 _+ 0.8) x 10 3 MC Steps 

for this run. The means of ISI and Vs are 

< IS[ > = 50.26 + 0.40 

(Vs> = 13.50+_0.15 

(4.22) 

(4.23) 

(4.24) 

The analog to (ISI/lYl>um,, for E1 is naturally <ISI/VS>Nm~n for E2 [see 
(4.13) for the definition of < >N~m]" For  Nmin ~ o% we estimate 

< ISI/Vs> = 3.50 + 0.010 _+ 0.005 (4.25) 

Again this ratio shows very little fluctuation and is finite, which implies 
that ]S[ is typically proportional to Vs, and from the estimate (4.25) one 
concludes that the surfaces in E 2 a r e  made of tubes consisting of single 
cubes with two of their faces removed so they are very ramified and 
treelike. �9 

The corrections to scaling for #2 and 02 were taken into account in the 
same way as for E1 and the resulting estimates are 

02 = 1.51 _+0.10+_0.15 (4.26) 

~t 2 = 1.733 +_ 0.005 +_ 0.006 (4.27) 

and for v2 we estimate 

Vz = 0.502 + 0.012 +_ 0.012 (4.28) 

Again, both 02 and v2 are close to the branched ploymer values 0 = 3/2, 
v-- 1/2 and consistent with them. 

5. D I S C U S S I O N  

5.1. C o m p a r s i o n  to  Prev ious W o r k  

If we compare our results for 0i, vi, and/~i to estimates of these quan- 
tities on similar or idential models obtained by other authors with a variety 
of methods, we find a surprisingly large number of inconsistencies. We 
believe it is important to discuss these discrepancies in some detail and to 
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point out the subtleties involved in a correct implementation of an MC 
simulation of a random surface model. 

We discuss two papers that consider surfaces related to the ensemble 
E~. First there is Redner's (33) exact enumerration study of self-avoiding sur- 
faces on the cubic lattice Z 3 with up to ten plaquettes. In Redner's model 
the boundary need not be connected, nor does he impose any restriction on 
the genus. Our proof of exponential boundedness naturally carries over to 
his model as well. His estimates 

0 = 1.5 (5.1)  

v = 0.538 _+ 0.03 (5.2) 

agree well with ours. Redner also finds that the average number of boun- 
dary bonds (1~1 >~ for all surfaces with N plaquettes varies linearly with N 
and gives approximately 

< 171 >N/N~ 2.3 (5.3) 

in reasonable agreement with (4.14), although his model is different from 
ours .  

Another ensemble closely related to E1 is the connected plaquette 
model of Tasaki and Hara. (~5) Their only restrictions are, however, that the 
surfaces S have to be connected and their notion of boundary seems 
somewhat arbitrary. Nevertheless, they prove an exponential bound [see 
Eq. (2.3)] for their model and provide an appealing argument suggesting, 
in agreement with our results, that the model should collapse into 
branched polymers in the scaling limit. 

A considerable amount of MC work has been devoted to surface 
models identical or closely related to E 2. Sterling and Greensite (SG) (17) 
originally studied the ensemble E2 with a grand canonical MC simulation 
by varying the plaquette activites fl, with partition function 

~sa(/~)= ~ fllsl (5.4) 
Se E2 

Note the missing factor (IIS]t-2) compared to  '--'~2(fl), (3.8), which arises 
only when cubes adjacent to S are accessed at random. Moreover, the 
ensemble considered by SG is not exactly identical to E2, since there is no 
fixed plaquette Po in their simulation. This implies that the probability for 
a surface S with N plaquettes to occur in the MC run in equilibrium is 

C N 
PsG([SI = N) = N'2/~ 

Z I~176 = 6 CM,2J ~M (5.5) 
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In our simulation, this probability is proportional to 

P([SI = N) ,-~ N 2 C N , 2 f l N / , . ~ - , 2 ( / 3 )  (5.6) 

because of Eq. (3.8) and the fact that IISII ~ ISI, yielding a factor N in (5.6), 
and because Po is kept fixed and CN,2 counts only the different con- 
figurations, there is another factor N. 

If we use the asymptotic behavior (2.5) for CN,2 with our estimate 
(4.26) for 02, we find that for /3 </3c,2, Psc is primarily concentrated at 
small values of N. This means that for the original SG algorithm a lot of 
simulation time is wasted for creating small surfaces that will be discraded 
anyway in the data analysis [see our definition (4.13) of (O)Nm~,]" By 
contrast, the probability (5.6), since 

2 - 02 > 0 (5.7) 

will have a maximum at 

0 2 - -  2 
N(/3) = - -  (5.8) 

ln(#2/3) 

and N(/3) --} oe as/3 ~/3c,2. 
Therefore, our algorithm, once equilibrated, will be 

P(ISI = N(/3)) _ (tic,2 - /3)0-2 e(0-2)[1- In(2- 0) + In,u] 

P(IS] = 6) 36/36 
(5.9) 

more likely to produce a surface of size N(/3) than a single cube with six 
plaquettes. For our production run at/3 = 0.56 this corresponds to 

P(]S[ = N(/3)) 

P(ISI =6)  
~2.4 (5.10) 

while the same ratio for the SG algorithm at/3 = 0.56 is 

P~G(ISI : N(/3)) ~ 0.28 (5.11) 
P(ISI = 6 )  

This calculation clearly demonstrates that our modifications render the SG 
algorithm much more efficient. We actually tested these expectations for 
both the original SG algorithm and our modified version by monitoring 
the distributions P(ISI = N) and eso([S] = N) during test runs. They both 
behaved exactly according to the foregoing analysis. Of course, the low 
ratio (5.11) could be avoided by simulating at an activity fl>flc,:. Then 
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P s o ( I S I = N )  would no longer be normalizable and it would have a 
minimum at 

~ ( f l )=  02 (5.12) 
In #2/7 

after which it increases exponentially. One could then introduce a cutoff 
Nmax >> R(/7) and never allow a surface with IS[ > Nmax. However, since P 
is then so strongly concentrated at N . . . .  it will be hard to extract infor- 
mation about 02 and #2 from this essentially microcanonical ensemble. In 
fact, SG ran their algorithm at activities/7 larger than our estimate of/7<.2. 
But since each run was started at the surface consisting of a single elemen- 
tary cube, the surface size presumably never got larger than N(/7) and it 
always stayed in the "metastable region" N < N-(/7). Another way to circum- 
vent the problem of low efficiency in the SG algorithm is to change the 
grand canonical ensemble to 

m~<(/7)= ~ /7~sr+k,,,~sl/,,,ini= ~ iSlgBisi (5.13) 
S e  E2 S ~  E2 

which can easily be achieved by changing the transition probabilities W. 
Any desired power I SI can be obtained with this method. 

Moreover, in order to estimate 02 and #2, SG measured the average 
size ( IS[ )  of a MC run at various values of/7. According to (5.5) and (2.5), 
for fixed/7 this is expected to be given by 

[k J/ ( I S I ) - -  N 1 O2(flv)N mSO(fl) 
6 

(5.14) 

Replacing the sums by integrals and extending the lower limit of the 
integrals to 0, the rhs of (5.14) can be approximately replaced by 

1 --02 
(ISl) (5.15) 

1 - f l # 2  

provided that 02 < 1. Plotting ( I s [ ) -1  versus fl, they found 

02=0.5___0.05 (5.16) 

#2 = 1.701 + 0.005 (5.17) 

in contradiction to our values (4.26), (4.27), especially for 02. We believe 
that our estimates are more accurate because (i) our method for estimating 
02 does not involve any a priori assumptions, while SG had to assume 
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02 < 1, and (ii) our algorithm is not becoming "metastable" as/~ gets larger 
than /~c,2. Instead, it indicates the approach of/~ to /~c,2 from below by 
producing larger and larger surfaces that eventually no longer fit into A. 

An interesting simulation of planar random surfaces without spikes 
(PRSWS) in Z 4 is due to Baumann and Berg. (~8) Their algorithm is quite 
different from SG's and does not store the whole lattice in the computer, 
but only the part occupied by the surface. PRSWS are only locally self- 
avoiding, e.g., no two plaquettes of a PRSWS are allowed to occupy the 
same 2-cell in Z 4. These authors note the problems with creating primarily 
small surfaces for/~ </~c and perform most of their runs for/~ >/?c. They 
found for their model 

0=2 .74+0.03  (5.18) 

v = 1/4 (5.19) 

3.25 </~ < 3.3 (5.20) 

in contrast to the PRS result (2.5) that 0 = 5/2. This result also contradicts 
our contention that a global self-avoiding constraint only changes the 
universality class of an RS model from noninteracting branched polymers 
to ordinary branched polymers, which implies that 0 should be equal to 5/2 
for the PRSWS model. We believe that their estimate may be wrong 
because the constant C~ in their Eq. (10) actually is equal to 

C~ = e ~(A2- A,) (5.21) 

and therefore involves an estimate of/~c. These two quantities should not 
be estimated independently from each other, as they are highly correlated. 
Finally, there is some recent MC work using the SG algorithm by 
Karowski, (19) who considers, among other models, also the ensemble E2 
and estimates 

v 2 = 0.435 _+ 0.022 (5.22) 

in agreement with a Flory argument for self-avoiding surfaces due to 
Maritan and Stella/16) However, the method he uses to estimate v2 is quite 
complicated and from Fig. 16 in Ref. 19 it seems clear that the error bar 
should be increased by at least a factor three, making his estimate 
consistent with v2 = 1/2. Moreover, the correct Flory theory for all these 
surface models seems to us to be the one due to Lubensy and Isaacson for 
branched polymers, in line with all our results. 
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5.2. Conclus ions 

In this paper we presented two models of self-avoiding random 
surfaces and analyzed them by means of the Monte Carlo method in three 
dimensions. We pointed out that the implementation of correct and 
efficient MC methods is a rather tricky problem for such complex 
geometrical models. Our results for the "critical exponents" indicate that 
both surface models belong to the universality class of branched polymers 
for which the exponents in d = 3  are known exactly to be 0=3 /2 ,  
v = 1/2. ~3z) Thus, our conclusion is that any lattice random surface model 
with short-range repulsive interactions will belong to this universality class. 
The reason, as pointed out previously by other authors, ~8'15) is that treelike 
thin surfaces have such a high entropy that they dominate the critical 
behavior even in the lowest nontrivial dimension d =  3. 

The method ~31) we used to extract the exponent estimates from the 
data turned out to be very efficient. We believe that this is the reason that 
our estimates are at variance with practically all other Monte Carlo work 
on identical or almost identical models of random surfaces. (17-19) This is 
only partly due to the fact that the field is relatively new and that there are 
a multitude of possibilities to define a random surface model. 

Finally, our simulations have indicated that the SG algorithm, if 
handled with care, is very useful for studying physical problems involving 
lattice random surfaces in three dimensions. We intend to apply it in the 
near future to the Widom model (9) for microemulsions. 
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